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Magnetotransport in Simple Metals. An Exactly
Soluble Model
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The magnetoconductivity tensors of a metal with a weakly anisotropic Fermi
surface are determined from analytic solutions to the Boltzmann equation
without any restrictions on the magnitude of the cyclotron frequency compared
to the collision rate. Results are given for both a two- and a three-dimensional
model, the former being analytically simpler to handle. The Hall coefficient and
magnetoresistance are obtained as functions of .the magnetic field, and we show
by explicit calculation how the thermoelectric coefficients at high magnetic
fields are determined by the thermodynamic entropy.

KEY WORDS: Anisotropic Fermi surface; Boltzmann equation; re-
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1. INTRODUCTION

Although transport phenomena in magnetic fields play a prominent role in
solid state physics, there is a remarkable lack of analytically soluble models
that may yield insight into the important effects of band anisotropy on
these phenomena. The qualitative effects of the shape of the Fermi surface
are readily appreciated from the pioneering work of Lifshitz, Azbel, and
Kaganov,'"” who demonstrated how purely topological arguments may be
used to predict the high-field behavior of the magnetoconductivity tensors
relating an electric field or a temperature gradient to an electric or thermal
current. A detailed calculation of the conductivity tensors is extremely
difficult for a realistic Fermi surface, even in the simple relaxation time
approximation for the effects of collisions. As a result, the discussion of the
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transport properties of metals in magnetic fields is usually restricted to the
high-field limit, in which simple expressions for, e.g., the Hall coefficient
may be obtained. Alternatively one introduces isotropic two-band models
that possess nontrivial magnetotransport properties. Such models do not, of
course, apply to simple metals like sodium or potassium, and they yield no
insight into the role of anisotropy in magnetotransport.

In this paper we shall discuss a soluble model of an anisotropic Fermi
surface, which is appropriate to simple metals. We demonstrate how the
various magnetoconductivity tensors may be calculated analytically to
second order in the anisotropy parameters. The model allows one to study
explicitly the difference between the high-field and low-field Hall coeffi-
cient, the former depending on the total number of electrons only, and
yields an expression for the transverse and longitudinal magnetoresistance
which shows the expected saturation behavior in high magnetic fields. The
off-diagonal part of the thermoelectric tensor in high magnetic fields is
proportional to the thermodynamic entropy, contrary to the situation at
low or intermediate fields, where it has a much more complicated depen-
dence on the Fermi surface parameters.

In the following we solve this anisotropic single band model explicitly

~and demonstrate how the electronic distribution function and the related
transport coefficients are obtained as functions of the magnetic field. The
model is in principle applicable to the alkali metals, which have nearly
spherical Fermi surfaces. However, as is well known, the standard semiclas-
sical transport theory fails to account for the observed high-field magneto-
resistance of materials like potassium. Rather than saturating at a small
value in accordance with semiclassical theory, the experimentally observed
magnetoresistance of potassium continues to rise with magnetic field,
exhibiting a linear dependence on w.r, the product of the cyclotron
frequency w, and the collision time 7. The linear rise persists to fields
corresponding to w7 = 100.? This linear magnetoresistance is generally
attributed to macroscopic inhomogeneities, which distort the current flow,
though no definitive explanation that applies to realistic situations has yet
been given.

The aim of this paper is therefore not to explain the magnetoresistive
behavior of the alkali metals, but rather to elucidate the effects originating
from an anisotropic band structure in a case where analytic solutions may
be obtained, and, in particular, to analyze the high-field properties. The
model Fermi surface we shall study was introduced by Jones and Zener(®
and studied by Davis,"¥ who calculated the low field magnetoresistance
and Hall coefficient. The analysis of this model was later extended by
Ah-Sam, Hejgaard Jensen, and Smith,> who used variational methods to
calculate the longitudinal magnetoresistance for all magnetic fields. These
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authors showed how to derive upper and lower bounds on the longitudinal
magnetoresistance and found that their calculated upper and lower bounds
coincided for this particular model, constituting in effect an exact model
solution for the longitudinal magnetoresistance. The variational method
does not, however, apply to the off-diagonal components of the conductiv-
ity tensor, and cannot therefore yield, e.g., the Hall coefficient.

To obtain the complete conductivity tensor we therefore use a more
direct approach and expand the driving term of the kinetic equation in
terms of a Fourier series in the phase variable that describes the location of
an electron on an orbit specified by its energy e and the value of the wave
vector, k,, along the direction of the magnetic field. The resulting first-
order differential equation may be solved exactly by a Fourier expansion
method.

The plan of the paper is as follows. In Section 2 we describe the model
Fermi surface. The following section contains the solution of the transport
equation and the calculation of the conductivity tensor, valid to second
order in the anisotropy constants. The final section contains a brief
discussion of the thermomagnetic properties of the model.

A number of mathematical details are collected in Appendix A.

2. THE MODEL FERMI SURFACE

In this section we summarize the equilibrium properties of our Fermi
surface model. We consider both a two-dimensional and three-dimensional
model, the latter being the case which describes nearly free electron metals
like the alkali metals. The two-dimensional model possesses many features
in common with the three-dimensional one, and it is somewhat simpler to
analyze from a mathematical point of view.

The relationship between the energy € and wave vector k of a Bloch
electron is in three dimensions taken to be

k = ko(€) + k(€)Y (cosb, ¢) 2.1

where # and ¢ are the polar and azimuthal angles of k, and k(¢) and k,(¢)
given functions of e. The anisotropy enters through Y, which is a cubic
harmonic of fourth order, given by

Y = g(cos8) + f(cosf )cosdp = Py(cosf) + P(cosf)(cosdp)/168 (2.2)

Here g = P, is a Legendre polynomial, P,(x) = (35x* — 30x? + 3)/8, while
f= P;/168 is given by the associated Legendre function, P;(x) = 105(1 —
x%)%. At 8 = 7/2 one has

Y(0,¢) =2+ 3cosd¢ (2.3) i

Note the cubic symmetry, which is evident from the presence of cosd¢ in
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Y. In two dimensions we may use the simpler expression
k = ko(€) + k,(€)cosde 24

Physically the constant energy surfaces (2.4) correspond to a metal with a
(noncircular) cylindrical Fermi surface. As we shall see, by taking the
magnetic field along the cylinder axis, it is possible to derive simple
expressions for the conductivity tensors from (2.4).

For later use we now specify the relation between the band parameters
and the total number of electrons, the density of states at the Fermi energy
and the Fermi energy itself. The density of states (per unit volume V= 1)
g(e) in three dimensions is given by

1 das
8O == )= 5 [ 4 25)
where the integration in (2.5) is extended over the two-dimensional surface
S(e) of constant energy e. The magnitude of the group velocity v = (1/%)
(de/0Kk) is denoted by v. The surface element dS is related to the solid angle
element d€2, where d{} = sin 8 dff d¢, through

cosydS = k*dQ (2.6)

with cosy =k - v/kv, ¢ being the angle between the group velocity v and
the Bloch vector k. The relation (2.6) is a consequence of the fact that v is
perpendicular to the surface element dS. We use from here on units such
that A= 1.

We shall need, in the following, expressions for the velocity v given by

de

in terms of the derivatives of k with respect to €, § and ¢. For the x
component of the velocity we use

dk _ ok e ., 9k 06 , 3k 9%
k.~ de k. T 36 3k, © de Ok, (2:8)

which, together with the elementary expressions for dk/dk,, 98/0k,, and
09 /0k,, yields

_ 1 _ 1 3k 1 ak
v, = ak/a (51n0005q> % 30 cosf cos ¢ + 7 9 sin qs) (2.9
For the y and z components we get similarly
1 8k 1 9k
v, = / (smﬂsmq) % 36 cosfsin¢ Zsind 9 cosq)) (2.10)
-1 1 3k .
v, = 3% 3¢ (cosH+ X 30 51110) (2.1hH
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It follows that v -k = k/(3k /0¢), allowing one to transform (2.6) into
' dS = vk*(0k /d€) dQ (2.12)

The density of states g(e) is in general given by the surface integral
(2.5). Using (2.12) we transform (2.5) into

g(e) = (1/7*)Xk* 3k /de) (2.13)
where (- - - > is defined as the spherical average
1 d(cosB) 27 d
(o= __.. _f | 277“. (2.14)

In two dimensions (d = 2) one finds s1m1larly
g(e) = (1/m) kdk/de) for d=2

where the angular average only involves integration over ¢ according to
<> = [(d¢/2m) - -
In the absence of anisotropy, k = k.(e), and the density of states in
three dimensions is

__k2ak =1 g2 2.15
g = go(€) Je L2 0% (2.15)

where here and in the following the prime denotes differentiation with
respect to €. The Fermi momentum is ky(ez). It is natural to introduce an
effective mass m,, by the definition

= kokj) (2.16)

€=¢p

such that in analogy to the case of free electrons
go(er) = mo o(€r) (2.17)

Next we express the number of electrons and the density of states at
the Fermi energy in terms of the parameters of the model. First we shall
relate the number of electrons n to the Fermi energy. One has

n= fo “ de g(e) = 5-::2- {(K(er))® (2.18)

taking the zero of energy at the bottom of the band. We introduce the
anisotropy parameters

_ ki(€r)

= o) (2.19)
and

_ ki(er) (2.20)

ko( fr)
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Then one finds readily
n=nyl+4%pB% (2:21)

where ny = kj/37% Similarly the density of states at the Fermi energy
becomes

g(ep) = gO(eF)(l + B+ & ,87) (2.22)
In two dimensions (2.21) and (2.22) become respectively,
n=nyl+1%B% (221

with ny = kj /27 and
g(er) = go(er)(1 + 5 BY) (222
with gy(eg) = my/ 7.

3. THE TRANSPORT EQUATION

Starting with the semiclassical transport equation we shall now demon-
strate how it is solved and obtain complete expressions for the conductivity
tensor valid to second order in the anisotropy parameters 8 and y. As
mentioned in the introduction, the effect of collisions is treated in the
relaxation time approximation. When the collision probability is indepen-
dent of the initial and final wave vectors, as 1n the case of s-wave scattering,
the relaxation time approximation is justified, since the scattering-in term
does not contribute.

We first discuss the three-dimensional case, in which the dispersion
relation is defined by (2.1)-(2.2). The standard Boltzmann equation for the
electron distribution function f(r,k,7) is in the relaxation time approxima-
tion given by

of o L df __f-f°
where f° denotes the equilibrium Fermi function f° = [exp(e — pn)/k, T +
117" and 7 is a relaxation time, which we take to be a constant.
For Bloch electrons in a magnetic field B and an electric field E the

semiclassical equations of motion are
_ 3¢

ok
k= —e(E+vXB)

F=v
(3.2)

where the charge of the electron is denoted by —e. In the presence of an
electric field or a temperature gradient the kinetic equation (3.1) may be
linearized in the usual manner. For the purpose of keeping the discussion
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simple we shall first consider the case of an electric field alone, since the
other transport coefficients may be readily obtained from the electrical
conductivity, as shown in the following section. The operator involving the
magnetic field may be written most conveniently in terms of the phase
variable <1~>, which specifies the position of an electron on the orbit defined
by the two constants of the motion, the energy ¢ and the component of the
k vector along the axis of the magnetic field. Taking the field to be along
the z axis the new variables are (e, Z,¢) where

c_ 1 rd
o= ol By (3.3)
with the cyclotron effective mass m, defined by
1 dl
me =5~ (34

and o, = (v} + ¢))'/%

The integrals in (3.3)-(3.4) are line integrals along the orbit specified
by € and k,, the integral in (3.4) running over the entire orbit. In terms of
these new variables the linearized Boltzmann equation becomes

0
PP AP NP (3.5)
e 3 T
where g = f— f° is the deviation from equilibrium and
—¢eB
W= (3.6)

is the cyclotron frequency, which depends on k, and e. When evaluating
(3.3)-(3.4) we need to express the line element &/ in terms of the angle ®
between the components of k and v in the plane perpendicular to B,
dl = ksinfd¢/cos®, where cosd = kL ¢, with v, and k, being the
perpendicular components k| = (k, k ,0) and v, =(v,,v y,O) Using the
expressions (2.9)-(2.10) for the Veloc1ty components in spherical coordi-
nates one finds

_ L 27
me= - A Qdo (3.7
where
_0k(1 _ cosd dk/38\ !
U= ae(k ksmd K ) (38)

To second order in 8 and y the function £ becomes
Q= mo[l + B(Y —cosBY') + Bcos’ Y + yY + ByY(Y — cos0Y’)]
(3.9)
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with Y’ = 3Y /dcosf. The result (3.9) is formally valid to second order in
the anisotropy constants. When the integral (3.7) is performed, care must
be taken to ensure the constancy of k,, since the polar angle # is not a
constant of the motion, as the electron traverses a given orbit. From the
two relations k, = kcosf and k = ky(1 + BY) one finds for an orbit of
energy € = €, to second order in f3,

cosf = xo[l ~ BY,+ B(Y§ + xOYOYé)] (3.10)

where Y, = g(xo) + f(xo) - cosd¢ = g, + fcosdd, Yy=03Y,/0x, and x,
= k,/ky(€z). The phase angle ¢ and the azimuthal angle ¢ are in general
related by

dé

% 0 (3.11)

1
mL‘

When evaluating the conductivity we need to expand this relation only
to first order in B and v,

b= ¢+ BL[ xof5(x0) — fo]sindd ~ Lyfysin4g (3.12)

Returning to the kinetic equation (3.5) we express the velocity occurring in
the driving term proportional to the electric field E in terms of cos¢ and
sing and their higher harmonics. The result of this evaluation is given in
Appendix A. In the present case where the anisotropy is considered to be
weak it is sufficient to include the first, third, and fifth harmonics in the
transverse case, and the zeroth and fourth one in the longitudinal case,
corresponding to our treatment of the cubic harmonic as a small perturba-
tion.
Thus we get to second order in the anisotropy parameters 8 and vy

v,= 3 Pycos(2n+ 1)yé (3.13)
n=0,1,2
and
v,= > (—1)'Psin@2n+ 1)é (3.14)
n=0,1,2

where P, is given in Egs. (A1)-(A3). The velocity component along the

n

magnetic field is

o,= 3 Q,cosné (3.15)
n=04
with Q, given by (A4)—(AS5).
Once the expansion in Fourier coefficients has been performed the
solution of the kinetic equation is straightforward. In the transverse case
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with E along the x axis, E = (E,0,0), the kinetic equation is

1 P DR T >
w—|g=eE—=— > P,cos(2n+ 1)¢ (3:16)
3 de , 51
with the solution
2 .
g= > a,cos(2n + )¢+ b,sin(2n + 1)¢ (3.17)
n=0
The Fourier coefficients a, and b, are given by
af° P,
a, = rel =— 3.18
de 1+ (2n+ 1)2(.)37‘2 (-18)
and
0" P,(2n+ Dw,r
b, = 'reng—— at ) (3.19)

de 1+ (2n+ 1Ywlr?

as seen by inserting the solution (3.17) in (3.16).

Once the distribution function has been determined the remaining task
is to calculate the current.

The electrical current j is

. dk e ~
;= == pg=— — |de| dk, | d ; 3.20
Ji 2.3 V€= 4773[ 6f f pm.vg (3-20)
As usual the integration over ¢ may be done at zero temperature, using
3f°/3e = — 8(e — €x). To complete the integral over k, it is necessary to

express all quantities in terms of x,, using (3.10). The resulting expression
becomes algebraically complicated but readily integrable. The details are
outlined in Appendix A. In three dimensions the conductivity tensor o;
relating the current to the electric field through j; = o, E; is given by

1 1 o2 o’ 2
0, =0 +c+ G+l ——= )¢
* 0 1+ a? ! 1+0[22 (1+a2) ’
1 1
Cq+ c 3.21
1+9a> * " 1+250° 5} - 21

1+d, + o d, + o? )2
C
! 1+oz22 (1+a2 3

3cq0 4 Scso }

3.22
1+ 942 1 4 2542 ( )

2
0, = 00[1 + %(21ﬁ2—2ﬁy+ e EEF 537 (3B~ )2} (3:23)
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and o Oxxs Oxy = ~ 0Oy, 0y =0 . =0. Here o,= nype’r/m, with n,

= Ik} /377 and my is given by (2. 16) We have furthermore introduced the
important dimensionless parameter a as

a = T, wy = eB/my, (3:24)
The coefficients in (3.21) and (3.22) are as follows:
2663 B2+ 93 _2»_ 419 By

‘17 1232 12327 T 1848
a= = BT A b
Ca"%% B’ + 27—361—72+ -%1- By
0= 5a5 B 2aa ' Ty B (325)
€= ;igi B+ 2642654 vi- 1622352 By
b ?gg i 3868976 - égz A
f-- 2B 19, 16

The longitudinal magnetoconduct1v1ty, g,,, agrees with that calculated
by Ah-Sam et al.’> using variational methods.

Let us consider some simple limits of these rather complicated expres-
sions. In the zero field limit (« — 0) one has

oxx=agx=ozoz=00[l+4,82—%,8~y+%y2] (3.26)
while at high fields (a — o)
6, =02=0 %(1+—ﬁ2+ B) (3.27)
and
o 1 4
0 = 02 = 0y (1 +5 ,82) (3.28)

The result (3.28) for o, involves as expected simply the total number of
electrons n, given by (2.21), or

g =

o , o> 00 (3.29)

(%

The high-field limit of the diagonal resistivity element p,, is correspond-
ingly

ox = P52 = (—’1; (1 + 33 By) (3.30)
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whereas in zero field

=450 = _1_ — 2 i — _4_ 2 31

Pxx = Pxx 60(1 A%+ 57 By 217) (3.31)

Note that the difference p2 — p2, = (1/0)[808%/21 + 4(B + v)*/21]

is always positive, regardless of the sign of 8 and vy, corresponding to a
positive magnetoresistance. The low-field magnetoresistance is given by

Pex — PO = 05 ' £a*(597B7 + 37y* — 46 By) (3:32)

whereas the low-field Hall coefficient is

—poPx_ 1 (164, 4 2 24
Ry = Rf= =3 noe(l 2 B2+ 5y 7,87) (3.33)

In Figures 1 and 2 we plot the field dependence of p, . and the Hall
coefficient R, for various values of 8 and y. It is illuminating to compare
(3.33) with the high-field Hall coefficient R;7 = —1/ne, where according to
(221) n=ny(1+4B%. We see that Ry/R¥ =1—2(B+ v)*+ y> L.
Note that the Hall coefficient exhibits a maximum at a« ~1 as shown in
Figure 2.

In two dimensions the calculation of o, and o,, is much simpler.
Details are given in Appendix A. The results are obtained with a magnetic
field along the cylinder axis,

2 2
+3dp-L L pgyr—o zﬁv}

_ 1
"”“’0[1+a2 32 32 I+ a

and

32 216 1+a2

2 2
oyx=00{lfa2 1+—3¥—1—182-—‘Y__-_B_X+ [24 ,8’}'}

3a (15 3 )2 Sa (15 5 )2
— Bty +—=— =B = 3.35

1+ 9a? s Py 1+ 2502 5 P g7 (333
where 6, = nye’r/my, my=kok;, and ny= kZ/27 [cf. (2.21")], while «
= eBr /my as before. The corresponding resistivity and Hall coefficient are
shown in Figures 3 and 4.
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Fig. 1. A: Transverse magnetoresistance as a function of « = (eB/my)r, for B=0.1 and
y = 0.1. The saturation value in the high-field limit is indicated by the dashed line. B: As in
Fig. 1A except that 8 = 0.1 and y = 0.01.
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Fig. 2. A: Hall coefficient [Ry(B) — Ry(0)]/ Ry (0) as a function of a = (eB/my)r, for
B=0.1 and y=0.1. R,(0) is the low-field Hall coefficient. The saturation value in the
high-field limit is indicated by the dashed line. B: As in Fig. 2A except that 8 =0.1 and
vy =0.01.
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Fig. 4. As.in Fig. 2 but in two dimensions, where Py« 18 given by (3.34)—(3.35).
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4. THERMAL TRANSPORT

The solution we have presented in the preceding section may be taken
over immediately to discuss thermal effects. The Sommerfeld expansion
which involves an integration over energy may always be performed after
the integration over the angular variables has been completed as in the
preceding section. In general we are interested in determining the tensors
relating the electric field E and the temperature gradient VT to the electric
current j and the heat current u,

j=GE— VT
_ 4.1
u=yE--AVT
According to Onsager’s relations we have
1
By(B) = Lv,(~B) (42)

which may be explicitly verified from the kinetic equation. By employing
the Sommerfeld expansion we find, e.g.,

2
g (kg T) ,
where o) = d0;; /€. Similarly one finds
_n2 kg
M= 2Ty (4.4)

which is the Wiedemann-Franz law.

The thermoelectric tensor S is obtained by relating the electric field E
to the temperature gradient VT under conditions when the particle current
j vanishes,

E=5 BVI=SVT (4.5)
or
S=58 (4.6)
At high fields S, is given by
X 2 kz o,x
S, = By w2 kT % (4.7)
Oy 3 e o,

The energy dependence of 0 is according to (3.28) determined by the
~ combination kj + 4 kiky. Upon taking the derivative of this with respect to

€ we get

(4.8)
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where g(e) is the density of states given by (2.22). The result (4.8) is in
agreement with the general property that the high-field limit of the thermo-
electric tensor involves the entropy of the electrons.(® At low and interme-
diate fields the calculation of the thermoelectric tensor introduces the
second derivative of k, with respect to €, evaluated at the Fermi energy.

APPENDIX A

In this appendix, we give expressions for the Fourier coefficients in the
expansion of the velocity components (3.13)-(3.15), and we discuss the
procedure for the derivation of the result (3.34)-(3.35).

From (3.12) we obtain

cosng = cosng + %(CB + dy)[cos(4 - n)q§ —cos(n + 4)q§}

2 .
- % (cB + dy)zcos no

where the coefficients ¢ and 4 are given in terms of f, and g,, defined below
(3.10), as c =%(fy — xofp), d =1 f,. A similar expression holds for sinn¢,
where n is an integer. Upon substitution of (3.10) into (2.9)-(2.11) and
using the expressions for cosn¢ and sinn¢ as above, we find

l ! o .
Po= ako/a [(1 - x5+ 2,3xogo) ’ 4 Bgosin Bycos By + y(— gsinby)

+B%A + B + ﬁyC} (A1)
g cos 00 ) 1, 2
P, = 3%, /e [ ( Jfo——7— S0, 2 sinf, + 5 fosin Bcos b, Sinf,

+ y( g sinf, — % fosin 00) (A2)

-1 cos’d _C 1 o 2fo
P,= 3%, /oe [ ( fo—5" s1n0 5 sinf, + 3 fosindycos b, + snd, )
+y(—- -gsin 0, — % fosin 00)} (A3)

Qo= —akol/ae [cos by + B( 26c0sy — gocos by — g) + (= gocos by)

+8°D + y’E + ByF} (A4)

Q4= ik /a [ ,B(focos = focosby — fo) + y(~ focos 00)} (A5)
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In writing (A1)-(A5) we have introduced x, = k,/ky(€;) explicitly in
the first term of (A1) instead of the polar angle §, of the undeformed Fermi
sphere, k = ky(ez), since after squaring P, this term should be integrated
over the full range of x, from —(1 + B8) to (1 + B). The remaining terms
are expressed in terms of the angle §;, which runs from 0 to #, correspond-
ing to —1 < x, < 1. The coefficients 4, B, C, D, E, and F of the quadratic
terms of Py and Q, need not be determined explicitly as shown below. The
component o,, for example, is given by [see (3.20)]

Oxx = Uofdxo%

where the integration limits of x, have been discussed above. The integrand
contains polynomial functions of x,, thus the integral above is easily done.
The cyclotron mass m, and w7 may be replaced with my and a, respec-
tively, in the last two terms of the integrand in (A6) since P? and P} are
quadratic in 8 and vy, while the relationships

m,P¢ m, P} m, P}
14+ w¥?  1+9%%? 1425042

(A6)

mc=m0(1+m,,8+bly+m2,82+b2,8y) (AT)
and
1 1 a’? 2
= 1+ 2m; B+ 2b,;y +2m + 2b
1+w31'2 _1+a2{ 1+a2[ 1A Y 2B 2By
=3(m B+ bly)z]
o2\ 2
+ ( o ) (2m, B+ 2byy) (A8)

have to be used in the flrst term. Here m1 go X080, b1 =go, My
= x5(go&6 + 1fof5 + 86 +3fD) and by = g5 + L5 — 2x08080 — Xofo fo-

The contribution from the nondetermined terms in (A1) is obtained by
equating the zero field limit of (A6) with the result (3.26), which is easily
calculated from the Boltzmann equation without change of variables. A
similar procedure is applied in the case of g,, except that the contribution
from the nondetermined coefficients in (A1) cannot be obtained by switch-
ing off the field. Instead we use the relationship

fdxo m.w TPO fd myPg

1+w2'r2 Ol+w
m P? —mO)P02
= a|dx —a|dxy————
f 01+w f 0 1+ wir?
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where m, — mj is given by (A7). The first term in the last expression above
is known from o,, and in the second we may neglect the second-order
terms involving the unknown coefficients 4, B, and C in (Al).

Since the procedure in two dimensions is similar to that in three
dimensions, except that it is much easier in this case, we shall only give the
results below and number them with primes of their equivalent result in
three dimensions:

v, = akl/ae (cos¢ + % g% sin qb) (2.9)
v, = akl/ae (sin¢> - % %cosqﬁ) (2.10")
b= [ 4 (33)
m= 54 (3.4
kTv dl = kd¢ (2.6")

The Boltzmann equation is given by (3.5). We find the following results
analogous to (3.12)-(3.14)

$p=¢ ~ 1(B + y)sindé (3.12)

v, = D, cos(2n + 1)(5 (3.13)
n=0,1,2

v, = n=0,1,2(_ 1)"D,sin(2n + 1) (3.14)

where

-1 31 p2_ 1 2 1 /

Do= 3%, /5¢ 1+ -mr %) (A1)

=1 15,5 3 ’

D=~ § A 3) (A7)

=1 (15, 5 ’

D ako/ae( 8 8 Y) (A3)

Equations (3.16)—(3.19) are valid also in two dimensions,
. dk —é ~
;= —e| == vg=—= [de|d : 3.200
ji= —ef og= % [de[dpmug. (320)
From (3.4’) we find
m, = my(1 + 3 By) (A7)
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and

L1 (1+ azzﬁy) (A8)

1+ w2 1442 1+«

Finally we substitute the expressions for m,, v;, and g into (3.20') and
obtain

p; b} 0 )

g, = O]
” ( 1+ ¥ 14902 1+ 25072

w.7D¢ 3w,7D} 5w,7D3
O = Uomc( 1+ wfﬂ'z B 1+ 9w3¢2 1+ 25w31‘2 )
which gives (3.34) and (3.35), respectively. The limiting value at B =0 is
o, = 00(1 +8B8%— 1By + %yz) (3.26")

whereas the high-field limits are

0 ne ’

ny = —E (329 )

© 2 kpT g(er) ,
SE=TF e T ¢

where n and g(e;) are given by (2.21") and (2.22"), respectively.
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