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Magnetotransport in Simple Metals. An Exactly 
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The magnetoconductivity tensors of a metal with a weakly anisotropic Fermi 
surface are determined from analytic solutions to the Boltzmann equation 
without any restrictions on the magnitude of the cyclotron frequency compared 
to the collision rate. Results are given for both a two- and a three-dimensional 
model, the former being analytically simpler to handle. The Hall coefficient and 
magnetoresistance are obtained as functions of.the magnetic field, and we show 
by explicit calculation how the thermoelectric coefficients at high magnetic 
fields are determined by the thermodynamic entropy. 
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1. I N T R O D U C T I O N  

Al though  t ranspor t  p h e n o m e n a  in magne t ic  fields p l ay  a p rominen t  role in 
solid state physics,  there is a r emarkab l e  lack of ana ly t ica l ly  soluble models  
that  m a y  yie ld  insight  into the impor t an t  effects of b a n d  an i so t ropy  on 
these phenomena .  The  qual i ta t ive  effects of the shape of the Fe rmi  surface 
are  readi ly  app rec i a t ed  f rom the p ioneer ing  work of Lifshitz, Azbel ,  and  
Kaganov ,  (]) who demons t r a t ed  how pure ly  topologica l  a rguments  m a y  be 
used to pred ic t  the high-f ield behav ior  of the magne toconduc t iv i ty  tensors 
relat ing an electr ic field or a t empera tu re  g rad ien t  to an  electric or  thermal  
current .  A de ta i led  ca lcula t ion  of the conduc t iv i ty  tensors is ext remely  
diff icult  for a realist ic F e r m i  surface, even in the s imple re laxa t ion  t ime 
a pp rox ima t ion  for the effects of collisions. As a result,  the discussion of the 
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transport properties of metals in magnetic fields is usually restricted to the 
high-field limit, in which simple expressions for, e.g., the Hall coefficient 
may be obtained. Alternatively one introduces isotropic two-band models 
that possess nontrivial magnetotransport properties. Such models do not, of 
course, apply to simple metals like sodium or potassium, and they yield no 
insight into the role of anisotropy in magnetotransport. 

In this paper we shall discuss a soluble model of an anisotropic Fermi 
surface, which is appropriate to simple metals. We demonstrate how the 
various magnetoconductivity tensors may be calculated analytically to 
second order in the anisotropy parameters. The model allows one to study 
explicitly the difference between the high-field and low-field Hall coeffi- 
cient, the former depending on the total number of electrons only, and 
yields an expression for the transverse and longitudinal magnetoresistance 
which shows the expected saturation behavior in high magnetic fields. The 
off-diagonal part of the thermoelectric tensor in high magnetic fields is 
proportional to the thermodynamic entropy, contrary to the situation at 
low or intermediate fields, where it has a much more complicated depen- 
dence on the Fermi surface parameters. 

In the following we solve this anisotropic single band model explicitly 
a n d  demonstrate how the electronic distribution function and the related 
transport coefficients are obtained as functions of the magnetic field. The 
model is in principle applicable to the alkali metals, which have nearly 
spherical Fermi surfaces. However, as is well known, the standard semiclas- 
sical transport theory fails to account for the observed high-field magneto- 
resistance of materials like potassium. Rather than saturating at a small 
value in accordance with semiclassical theory, the experimentally observed 
magnetoresistance of potassium continues to rise with magnetic field, 
exhibiting a linear dependence on ~0c~-, the product of the cyclotron 
frequency % and the collision time ~-. The linear rise persists to fields 
corresponding to o~c~->~ 100. (2) This linear magnetoresistance is generally 
attributed to macroscopic inhomogeneities, which distort the current flow, 
though no definitive explanation that applies to realistic situations has yet 
been given. 

The aim of this paper is therefore not to explain the magnetoresistive 
behavior of the alkali metals, but rather to elucidate the effects originating 
from an anisotropic band structure in a case where analytic solutions may 
be obtained, and, in particular, to analyze the high-field properties. The 
model Fermi surface we shall study was introduced by Jones and Zener (3) 
and studied by Davis, (4) who Calculated the low field magnetoresistance 
and Hall coefficient. The analysis of this model was later extended by 
Ah-Sam, Hojgaard Jensen, and Smith, Cs) who used variational methods to 
calculate the longitudinal magnetoresistance for all magnetic fields. These 
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authors showed how to derive upper and lower bounds on the longitudinal 
magnetoresistance and found that their calculated upper and lower bounds 
coincided for this particular model, constituting in effect  an exact model 
solution for the longitudinal magnetoresistance. The variational method 
does not, however, apply to the off-diagonal components of the conductiv- 
ity tensor, and cannot therefore yield, e.g., the Hall coefficient. 

To obtain the complete conductivity tensor we therefore use a more 
direct approach and expand the driving term of the kinetic equation in 
terms of a Fourier series in the phase variable that describes the location of 
an electron on an orbit specified by its energy e and the value of the wave 
vector, k~, along the direction of the magnetic field. The resulting first- 
order differential equation may be solved exactly by a Fourier expansion 
method. 

The plan of the paper is as follows. In Section 2 we describe the model 
Fermi surface. The following section contains the solution of the transport 
equation and the calculation of the conductivity tensor, valid to second 
order in the anisotropy constants. The final section contains a brief 
discussion of the thermomagnetic properties of the model. 

A number of mathematical details are collected in  Appendix A. 

2. THE MODEL FERMI SURFACE 

In this section we summarize the equilibrium properties of our Fermi 
surface model. We consider both a two-dimensional and three-dimensional 
model, the latter being the case which describes nearly free electron metals 
like the alkali metals. The two-dimensional model possesses many features 
in common with the three-dimensional one, and it is somewhat simpler to 
analyze from a mathematical point of view. 

The relationship between the energy e and wave vector k of a Bloch 
electron is in three dimensions taken to be 

k = k0(e ) + k~(~)Y(eos0,~) (2.1) 

where 0 and ~ are the polar and azimuthal angles of k, and k0(e ) and k1(e ) 
given functions of e. The anisotropy enters through Y, which is a cubic 
harmonic of fourth order, given by 

Y = g (cos0)  + f ( c o s 0 ) c o s 4 ~  = P4(cosO) + p4(cosO)(cos4eo)/168 (2.2) 

Here g = P4 is a Legendre polynomial, P 4 ( x )  = ( 3 5 x  4 - -  3 0 x  2 + 3 ) / 8 ,  while 
f = P2/168 is given by the associated Legendre function, p4(x)= 105(1 - 
x2) 2. At 0 = ~r/2 one has 

Y(0, q,) = 3 + ~ cos 4~, (2 .3) ,  

Note the cubic symmetry, which is evident from the presence of cos4~ in 
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Y. In two dimensions we may use the simpler expression 

k = k0(e ) + k,(r (2.4) 

Physically the constant energy surfaces (2.4) correspond to a metal with a 
(noncircular) cylindrical Fermi surface. As we shall see, by taking the 
magnetic field along the cylinder axis, it is possible to derive simple 
expressions for the conductivity tensors from (2.4). 

For later use we now specify the relation between the band parameters 
and the total number of electrons, the density of states at the Fermi energy 
and the Fermi energy itself. The density of states (per unit volume V = 1) 
g(e) in three dimensions is given by 

g ( r  1 fs dS (2.5) 
ko 4~ -3 (c) v 

where the integration in (2.5) is extended over the two-dimensional surface 
S(r of constant energy r The magnitude of the group velocity v = ( l / h )  
(0r is denoted by v. The surface element dS is related to the solid angle 
element d~2, where df~ = sin 0 dO deo, through 

cos•dS = k2d~ (2.6) 

with cos~ = k" v/kv, ~k being the angle between the group velocity v and 
the Bloch vector k. The relation (2.6) is a consequence of the fact that v is 
perpendicular to the surface element dS. We use from here on units such 
that h = 1. 

We shall need, in the following, expressions for the velocity v given by 

3e (2.7) v=0- ~ 

in terms of the derivatives of k with respect to r 0 and ~,. For the x 
component of the velocity we use 

3k 3k 0r Ok 30 3k Oe~ 
Ok x - 0r Ok x + 0--0 0-~ + G 0k--~ (2.8) 

which, together with the elementary expressions for Ok/Okx, O0/3kx, and 
O(o/3kx, yields 

_ 1 ( 1 Okcos0cosq~+ - -  Vx Ok~at s in0cosq , -  ~ 

For the y and z components we get similarly 

l( vy -  Ok/3e s i n 0 s i n q , - - -  

1 Ok sin ~'i (2.9) 
k sin 0 3q, ) 

1 Ok cos0s inq , -  1 3k cosff) 
k O0 ksin0 0~ 

_ 

vz ak/Oc -k 

(2.10) 

(2.11) 
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It follows that v.  k -- k / (Ok/Oe) ,  allowing one to transform (2.6) into 

a s  = vk2(Ok/Oc) d ~  (2.12) 

The density of states g(e) is in general given by the surface integral 
(2.5). Using (2.12) we transform (2.5) into 

g(~) = (1/~2)(k20k/~O (2.13) 

where ( �9 �9 �9 ) is defined as the spherical average 

f d~] . . . .  f ~  d(cosO ) ~2~ dq) (2.14) 
( ' ' ' ) =  4~r 1 2 2-~ " ' "  

In two dimensions (d = 2) one finds similarly 

g(Q = (1 /~r ) ( kOk /Oe)  for d =  2 

where the angular average only involves integration over q according to 
( . . . )  = f(dC,/2~r). . : .  

In the absence of anisotropy, k = ko(c ), and the density of states in 
three dimensions is 

1 k0 2 o k o _  1 2 , ( 2 . 1 5 )  
g = g~ = - ~  3c ~r2 k~176 

where here and in the following the prime denotes differentiation with 
respect to e. The Fermi momentum is ko(eF). It is natural to introduce an 
effective mass m 0 by  the definition 

m o = k0k~)l,=,r (2.16) 

such that in analogy to the case of free electrons 

1 
gO('F) = - ~  moko('g) (2.17) 

Next we express the number of electrons and the density of states at 
the Fermi energy in terms of the parameters of the model. First we shall 
relate the number of electrons n to the Fermi energy. One has 

. = f0  de (2.18) 

taking the zero of energy at the bottom of the band. We introduce the 
anisotropy parameters 

fi - ko(% ) (2.19) 

and 

k',(e,O 
Y -  k~(~r) (2.20) 
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Then one finds readily 

n = n0(1 + 3 2) (2.21) 

where n o = k3/3qr 2. Similarly the density of states at the Fermi energy 
becomes 

g(e-F) = g0(e-F)( 1 + ~ 3 2 + ~ flY) (2.22) 

In two dimensions (2.21) and (2.22) become respectively, 

n = no(1 + �89 fl 2) (2.21') 

with n o = k2/2~r and 

with go(e.F) = mo/ ~r. 

g(e-F) ---- go(e-F)( 1 + �89 3Y) (2.22') 

3. THE TRANSPORT EQUATION 

Starting with the semiclassical transport equation we shall now demon- 
strate how it is solved and obtain complete expressions for the conductivity 
tensor valid to second order in the anisotropy parameters 3 and 7. As 
mentioned in the introduction, the effect of collisions is treated in the 
relaxation time approximation. When the collision probability is indepen- 
dent of the initial and final wave vectors, as in the case of s-wave scattering, 
the relaxation time approximation is justified, since the scattering-in term 
does not contribute. 

We first discuss the three-dimensional case, in which the dispersion 
relation is defined by (2.1)-(2.2). The standard Boltzmann equation for the 
electron distribution function f(r, k, t) is in the relaxation time approxima- 
tion given by 

Of Of Of f _ f0 
o--7 + + k'--0k = �9 (3.1) 

where f0 denotes the equilibrium Fermi function f 0 =  [exp(e-- f~)/kBT + 
1]-l a n d ,  is a relaxation time, which we take to be a constant. 

For Bloch electrons in a magnetic field B and an electric field E the 
semielassical equations of motion are 

# = v -  Oe- 
Ok 

(3.2) 
l~= - e ( E + v  X B) 

where the charge of the electron is denoted by - e .  In the presence of an 
electric field or a temperature gradient the kinetic equation (3.1) may be 
linearized in the usual manner. For the purpose of keeping the discussion 
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simple we shall first consider the case of an electric field alone, since the 
other transport coefficients may be readily obtained from the electrical 
conductivity, as shown in the following section. The operator involving the 
magnetic field may be written most conveniently in terms of the phase 
variable q~, which specifies the position of an electron on the orbit defined 
by the two constants of the motion, the energy ~ and the component of the 
k vector along the axis of the magnetic field. Taking the field to be along 
the z axis the new variables are (c, k z, ~) where 

f vidl (3.3) 

with the cyclotron effective mass m c defined by 

mc= ~ dl (3.4) 
� 9  

2xl/2 a n d v  z =(v~ + vy) . 
The integrals in (3.3)-(3.4) are line integrals along the orbit specified 

by e and k z, the integral in (3.4) running over the entire orbit. In terms of 
these new variables the linearized Boltzmann equation becomes 

~ 0  (3.5) a g -eE.v +~oc~g= --~ 

where g = f - f 0  is the deviation from equilibrium and 

~ eB (3.6) 
m c 

is the cYclotron frequency, which depends on k z and e. When evaluating 
(3.3)-(3.4) we need to express the line element dl in terms of the angle 
between the components of k and v in the plane perpendicular to B, 
dl= ksinOd,~/cos~b, where cosqb =/~<"  ~ i  with v• and k< being the 
perpendicular components k< = (kx,ky, 0) and v• = (vx,vy,O). Using the 
expressions (2.9)-(2.10) for the velocity components in spherical coordi- 
nates one finds 

where 

m c = de# (3.7) 
J0 

a k ( 1  cos0 ak/aO) ~ 
~2 = ~-e k k sin 0 k (3.8) 

To second order in fi and 3' the function f~ becomes 

"~ m0[1 + f l ( r -  cos0 r ' )  + flZcos2Oy'2 + 3'V + f i y Y ( r -  cos0Y')] 

(3.9) 
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with Y ' =  ~ Y/~ cos0. The result (3.9) is formally valid to second order in 
the anisotropy constants. When the integral (3.7) is performed, care must 
be taken to ensure the constancy of k~, since the polar angle 0 is not a 
constant of the motion, as the electron traverses a given orbit. From the 
two relations k~ = kcos0 and k = k0(1 + flY) one finds for an orbit of 
energy e = eF, to second order in fi, 

cosO = X0[1--  /~Yo nt- 82(  y2 -t- xoYoYg) j (3.10) 

where Y0 -- g(Xo) + f(xo)" cos 4,I, = go + f0 c~ 40, Y~ = 0 Yo/OX o and x 0 
= kz/ko(er). The phase angle 0 and the azimuthal angle 0 are in general 
related by 

d~ ,_  1 ~ (3.11) 
dO mc 

When evaluating the conductivity we need to expand this relation only 
to first order in/3 and y, 

0"~7o +fl~ [xof~(xo) - fo]sin 4~ - ~ Yfosin 4d~ (3.12) 

Returning to the kinetic equation (3.5) we express the velocity occurring in 
the driving term proportional to the electric field E in terms of cos 0 and 
sin ~ and their higher harmonics. The result of this evaluation is given in 
Appendix A. In the present ease where the anisotropy is considered to be 
weak it is sufficient to include the first, third, and fifth harmonics in the 
transverse case, and the zeroth and fourth one in the longitudinal case, 
corresponding to our treatment of the cubic harmonic as a small perturba- 
tion. 

Thus we get to second order in the anisotropy parameters fl and 7 

v~ = ~] P, cos(2n + 1)~, (3.13) 
n =0,1,2 

and 

Vy = ~ ( -  1)~Pnsin(2n + 1)~ (3.14) 
n=0,1,2 

where P, is given in Eqs. (A1)-(A3). The velocity component along the 
magnetic field is 

vz= 2 Q, cosn~ (3.15) 
n=0,4 

with Q, given by (A4)-(A5). 
Once the expansion in Fourier coefficients has been performed the 

solution of the kinetic equation is straightforward. In the transverse case 
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with E along the x axis, E -- (E, 0, 0), the kinetic equation is 

1 + ~ g = eE E P.cos(2n + 1)~ (3.16) 
'r n=0,1 ,2  

with the solution 
2 

g = ~ a~cos(2n + 1)~+bnsin(2n + 1)~ (3.17) 
n = 0  

The Fourier coefficients a~ and b~ are given by 

an = t eE  ofo p~ 
OE 1 + (2n + 1)2o0~r 2 (3.18) 

and 

b. = reE Of~ Pn(2n + 1)%r 
3e 1 + (2n + 1)2o05 2 (3.19) 

as seen by inserting the solution (3.17) in (3.16). 
Once the distribution function has been determined the remaining task 

is to calculate the current. 
The electrical current j is 

ji= -ef  d--kvig= e f dff d @ mc ,g (3.20) 
4~r 3 4~r 3 

As usual the integration over e may be done at zero temperature, using 
Of~ = - 8 ( e  - eF)" To complete the integral over kz it is necessary to 
express all quantities in terms of x 0, using (3.10). The resulting expression 
becomes algebraically complicated but readily integrable. The details are 
outlined in Appendix A. In three dimensions the conductivity tensor % 
relating the current to the electric field throughj~ = %Ej is given by 

1 l + c , + - -  + 
axx=O0 l + a 2  1 +a2C2 l + a 2  ] 3] 

+ 1 a 2 c 4 +  1 c5 ) (3.21) 
1 + 1 + 25a ~ 

a__q___ l + d l  + d2 + _ _  c3 
~176176 l + a  2 ~ 1 +  l + a  2 

3c4a 5c5a } 
- -  + - -  (3.22) 
1 + 9a 2 1 + 25a 2 

o z z = a  o t +  (21fi 2 - 2 f i 7 + 7 2  ) 1 + 16a 2 2 3 1 ( 3 f i - 7 )  2 
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and o r = Oxx, axy = - a y e ,  O~z = oz, = 0. Here % =  noeZ 'r /mo with n o 
= ko3/~r 2 and m o is given by (2.16). We have furthermore introduced the 
important dimensionless parameter a as 

a = a~o'r, ~o = e B / m o  (3.24) 

The coefficients in (3.21) and (3.22) are as follows: 

2663 /32+ 93 3,2 419 /33, 
s  1232 ~ 1848 

582 t32_ 95 72+ 152 
c2= - 7---7- 23i ~ /3`/ 

492 /32 2_~1 72 24 C 3 = -ffff- -t- "1- ffff /3It 

2655 /32 75 `/2 435 s = ~ "[- ~ "1- ~ /3~ (3 .25)  

1875 2 ~ , / 2  625 
c 5 -  2464 /3 + - - -  1232 /33, 

905 t32 3~976 157 
d~ = T% + 3,2_ 2--(g/3`/ 

d2 = 828 /32 19 `/2 116 
- 7-T - 3 5  +i~T/33, 

The longitudinal magnetoconductivity, ozz, agrees with that calculated 
by Ah-Sam et al. (5) using variational methods. 

Let us consider some simple limits of these rather complicated expres- 
sions. In the zero field limit (a ~ 0) one has 

0 0 Oxx = Ox:, = o= = oo[ l + 4/32 - ~ /37 + 4 , / 2 ]  (3.26) 

while at high fields (a ~ ~ )  

1 (  8132 16 ) o:,~, = Ox~ = o o 1 + ff + ~ -  fly (3.27) 

and 

o y : = a y ~ = O o  1 ( 1 + 4  2) -ff/3 (3.28) 

The result (3.28) for oy x involves as expected simply the total number of 
electrons n, given by (2.21), or 

ne a --> ~ (3.29) 
O y x -  B , 

The high-field limit of the diagonal resistivity element Oxx is correspond- 
ingly 

,6) Px~=O~x= 1 1 + ~ -  /3"/ (3.30) 
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whereas in zero field 

1 (  8 4 ) (3.31) P ~  = Px~ = -~o 1 - 4 t92  + 19V - V 2 

Note that the difference p O~ _ p O = (1/o0)[80192/21 + 4(19 + "~)2/21] 
is always positive, regardless of the sign o f / /  and y, corresponding to a 
positive magnetoresistance. The low-field magnetoresistance is given by 

Pxx --  P ~ = a o 1 4 a 2 ( 5 9 7 f l  2 + 37y 2 -- 46fly) (3.32) 

whereas the low-field Hall coefficient is 

H noe 
(3.33) 

In Figures 1 and 2 we plot the field dependence of Oxx and the Hall 
coefficient Rn for various values of fi and 7- It is illuminating to compare 
(3.33) with the high-field Hall coefficient Rff  = - l /ne ,  where according to 
(2.21) n = n0(1 + 4//2). We see that R ~  = 1 - ~ ( / / +  y) 2 + 7240 ~T" 
Note that the Hall coefficient exhibits a maximum at a ~" 1 as shown in 
Figure 2. 

In two dimensions the calculation of G~ and % is much simpler. 
Details are given in Appendix A. The results are obtained with a magnetic 
field along the cylinder axis, 

a x x = a O  l + a 2  ~-~ - - - ~ +  / / Y + - - / / V l + a 2  

q._ 1 ( ~  //_1_ 3 ) 2 I (~_5 5 ) 2} 
1 + 9a - - - - - - ~  8 ~' + fi - 7 (3.34) 1 + 25a 2 

and 

a [ 31 f12 a y x - - o  o ~ 1 +  
l + a  2 3-2 

a2 ] v 2 / / v  + ~ & 

32 16 1 + a 2 

1 + 9a 2 1 + 25a 2 ~ y) 2 (3.35) 

where ao=  n o e 2 ~ / m o ,  mo =  k o k  ~ and no--k2/2vr  [cf. (2.21')], while a 
= e B ' r / m  o as before. The corresponding resistivity and Hall coefficient are 
shown in Figures 3 and 4. 



392 Oji and Smith 

~ I �84 ~ I I �84 I ~176 . . . . . . . . . . . . . . .  ~ "  . . . . . . . . .  ---s . . . .  

. . . .  _ _ _ _ : . ~ _ _ _ _ _ _ _ _ _ _ _ _  . . . . .  _ - _ B _ _ _ - -  

0 2 A 13=0.1 0l// 
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1 2 3 4 5 

6[ 

Fig, l. A: Transverse magnetoresistance as a function of c~ = (eB/mo)'r, for fl = 0.1 and 
y = 0.1. The saturation value in the high-field limit is indicated by the dashed line. B: As in 
Fig. IA  except that ,8 = 0.1 and "r = 0.01. 

I I I I I 

O.04 l __~__ L •=01 

o02 o.ol J ~  B~:~ . . . . . . . .  

lU 1 [ I I I 
1 2 3 4 5 

Q 

Fig. 2. A :  Ha l l  coeff ic ient [RH(B  ) -  RH(O)]/RH(O) as a funct ion o f  a = (eB/mo)'r, for  
,8 = 0.1 and 7 = 0.1. R#(0) is the low-field Hall coefficient. The saturation value in the 
high-field limit is indicated by the dashed line. B: As in Fig. 2A except that ,8 = 0.1 and 
y = 0.01. 
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Fig. 3. As in Fig. 1 but in two dimensions, where Oxx is given by (3.34)-(3.35). 
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Fig. 4. As in Fig. 2 but in two dimensions, where Oyx is given by (3.34)-(3.35). 
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4. T H E R M A L  T R A N S P O R T  

The solution we have presented in the preceding section may be taken 
over immediately to discuss thermal effects. The Sommerfeld expansion 
which involves an integration over energy may always be performed after 
the integration over the angular variables has been completed as in the 
preceding section. In general we are interested in determining the tensors 
relating the electric field E and the temperature gradient V T to the electric 
current j and the heat current u, 

j = T 
(4.1) 

u = 7" 

According to Onsager's relations we have 

" 1 
fl/y(B) = ~ ~[ji( - -  B) (4.2) 

which may be explicitly verified from the kinetic equation. By employing 
the Sommerfeld expansion we find, e.g., 

V,y = 3 e o~j (4.3) 

where o/~. = 3oij/3 %. Similarly one finds 

~r2 k2 Toij (4.4) 
h,y-  3 e 2 

which is the Wiedemann-Franz law. 
The thermoelectric tensor S is obtained by relating the electric field E 

to the temperature gradient V T under conditions when the particle current 
j vanishes, 

E =  ~ - ' ~ V T  = ~ V T  (4.5) 

or  

At high fields S~ is given by 

S x  x _ f i x  v _  "17"2 kZT ~  (4.7) 
Oxy 3 e oy~ 

(4.6) 

The energy dependence of o~ is according to (3.28) determined by the 
4 2 combination k 3 + ~ k~k o. Upon taking the derivative of this with respect to 

E we get 

lim Oyx g(eF) - ( 4 . 8 )  
ot--) oO ely x l~l 



Magnetotransport in Simple Metals 395 

where g(eF) is the density of states given by (2.22). The result (4.8) is in 
agreement with the general property that the high-field limit of the thermo- 
electric tensor involves the entropy of the electrons. (6) At low and interme- 
diate fields the calculation of the thermoelectric tensor introduces the 
second derivative of k 1 with respect to c, evaluated at the Fermi energy. 

APPENDIX A 

In this appendix, we give expressions for the Fourier coefficients in the 
expansion of the velocity components (3.13)-(3.15), and we discuss the 
procedure for the derivation of the result (3.34)-(3.35). 

From (3.12) we obtain 

cos n~ = cos n~ + ~ (c~ + dT) [ cos(4 - n)0 - cos(n + 4)q~ ] 

n 2 

4 (cB + dr 

where the coefficients c and d are given in terms of fo and go, defined below 
- -  1 t (3.10), as c - ~(fo - xof[O, d = �88 1 similar expression holds for sinn~, 

where n is an integer. Upon substitution of (3.10) into (2.9)-(2.11) and 
using the expressions for cos nq, and sin n0 as above, we find 

_ 1 Po 3ko/OE [ ( 1 -  x~ + 2fiX~go)'/2+ t3g;sinOocosO o + ,{(-gsin0o) 

+ fi2A + ~,2B + j3"fC] (11) 

1 [ ( 1  cos, 1, sn0oCOS0o ) S n0o P, fl ~ f o ~  + ~sinOo+ 

+ ~,( ~sin0 o - ~ fosin 0o) (A2) 

1 [ ( 2  c~176 CsinOo+ lf6sinOocosOo+ 2f~ ) P2- ~ko/Oe fl fo sin0 ~ ~ ~ 

d sin0 ~ 1 fosin0o) ] (A3) 
J 

Qo - Oko/O'l [cos0o + fi(g,oCOS20o _ goCOS 0o _ g•) + y ( _  goCOS 0o ) 

+ fl2D + ",rE + fl'/F 1 (14) 

_ 1 Q40ko/O, [ fl(f~cos20o - focos0o - f ; )  + y(-foCOS0o)l (A5) 



396 Oji and Smith 

In writing (A1)-(A5) we have introduced x o = kz/ko(e_F) explicitly in 
the first term of (A1) instead of the polar angle 00 of the undeformed Fermi 
sphere, k - -  ko(Er) , since after squaring P0 this term should be integrated 
over the full range of x 0 from - ( 1  + fl) to (1 +/3) .  The remaining terms 
are expressed in terms of the angle 00, which runs from 0 to ~r, correspond- 
ing to - 1 < x 0 < 1. The coefficients A, B, C, D, E, and F of the quadratic 
terms of P0 and Q0 need not be determined explicitly as shown below. The 
component Gx for example, is given by [see (3.20)] 

mc'  1 G x = o o f d x o  3 1 + o ~ f f r ~  + + (16)  1 + 9w2"r 2 1 + 25w2r 2 

where the integration limits of x o have been discussed above. The integrand 
contains polynomial functions of x 0, thus the integral above is easily done. 
The cyclotron mass rn C and % r  may be replaced with m 0 and a, respec- 
tively, in the last two terms of the integrand in (A6) since p2 and p2 are 
quadratic in 19 and 7, while the relationships 

r G = m0(1 + rn, fl + b,y  + m2/? 2 + b2fly ) (A7) 

and 

1 1 
1 + ~o~r 2 1 + a 2 

a 2 [2mlf i  + 2m 2[72 - -  1 + 2b O, + + 2b2/?y 
l + a  2 

- -3(mlf l  + biT) 2] 

have to be used in the first term. Here m 1 = g o - x o g ' o ,  bl = go, m2 
2 - , r r,, g62 i f ' 2 )  and b 2 = go 2 + i 2 ,' = xo(gogo + 2JOJO + + 2J0 ~f6 - 2Xogog'o - Xofof6. 
The contribution from the nondetermined terms in (A1) is obtained by 

equating the zero field limit of (A6) with the result (3.26), which is easily 
calculated from the Boltzmann equation without change of variables. A 
similar procedure is applied in the case of Oxy except that the contribution 
from the nondetermined coefficients in (A1) cannot be obtained by switch- 
ing off the field. Instead we use the relationship 

f dxo m~%rp2  @xo m~ 
1 + ~02z2 1 + oo]'r2 

m:P  (m: - mo)Pg 
= f ' f&o a dx~ 1 + %2"r2 1 +%~" 
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where m C - m 0 is given by (A7). The first term in the last expression above 
is known from Oxx and in the second we may neglect the second-order 
terms involving the unknown coefficients A, B, and C in (A1). 

Since the procedure in two dimensions is similar to that in three 
dimensions, except that it is much easier in this case, we shall only give the 
results below and number  them with primes of their equivalent result in 
three dimensions: 

_ 1 ( 1 0k sinq)) (2.9') v~, Ok/Oc cosq, + ~ 

1 (sin~ 1 ~_~cos~) (2.10') 

1 f dl 
~b= m----~ v (3.3') 

mc = -~ ~ d-~lv (3.4') 

k . v  dl = kdep (2.6') 
kv 

The Boltzmann equation is given by (3.5). We find the following results 
analogous to (3.12)-(3.14) 

~ r  - ~(fi  + y)sin4~ (3.12') 

v x = ~ DnCOS(2n + 1)~ (3.13') 
n =0,1,2 

vy = ~, ( -  l fDnsin(2n + 1)~ (3.14') 
n=0,1 ,2  

where 

_ 1 ( 1 +  31 f 1 2 _  1 3,2 D~ OkolOe 6-4 ~ - ~2 flY) (AI')  

_ I 

- 

D 2 0ko/0e 13 5 y) (A3') 

Equations (3.16)-(3.19) are valid also in two dimensions, 

j, = - e  f ~dk rig= __-- e f a f f  dSm?,g (3 20') 
27r 2 

From (3.4') we find 

m~ = mo(1 + �89 fly) (A 7') 
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and ( ~  
1 _ 1 1 + - -  fl'y ( 1 8 ' )  

! + ~o~r 2 1 + a 2 1 + a 2 

F ina l ly  we  subst i tute  the express ions  for me, v i, and  g into  (3.20') and  
obta in  

D~ 2 D 2 D 2 ) 
Oxx = oom c - _  + - _  + - -  

1 + ~o2r 2 1 + 9 J r  2 1 + 25~2r 2 

( %rD2o 3~~ 5% rD2 ) 

V x  = Oomc 1 + ,05  2 1 + 9 ,o5  ~ + 1 + 25 ,05  2 

which gives (3.34) a n d  (3.35), respectively.  The  l imiting value at B = 0 is 

o %x = %(1 + 8fl 2 - �89  �89 2) (3.26')  

whereas  the high-field limits are 

a ; ~ -  ne (3.29')  
B 

S~x=~o 7r 23 k2re g(eF)n (4.7 ')  

where  n a n d  g(CF) are given by  (2.21') and  (2.22'), respectively.  
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